Presynaptic, activity-dependent modulation of cannabinoid type 1 receptor-mediated inhibition of GABA release.

نویسندگان

  • Csaba Földy
  • Axel Neu
  • Mathew V Jones
  • Ivan Soltesz
چکیده

Endocannabinoid signaling couples activity-dependent rises in postsynaptic Ca2+ levels to decreased presynaptic GABA release. Here, we present evidence from paired recording experiments that cannabinoid-mediated inhibition of GABA release depends on the firing rates of the presynaptic interneurons. Low-frequency action potentials in post hoc identified cholecystokinin-positive CA1 basket cells elicited IPSCs in the postsynaptic pyramidal cells that, as expected, were fully abolished by the exogenous application of the cannabinoid receptor agonist WIN55,212-2 [R-(+)-(2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrol[1,2,3-de]-1,4-benzoxazin-6-yl)(1-naphthalenyl) methanone monomethanesulfonate] at 5 microM. However, the presynaptic basket cells recovered from the cannabinoid agonist-induced inhibition of GABA release when the presynaptic firing rate was increased to > or =20 Hz. Pharmacological experiments showed that the recovered transmission was exclusively dependent on presynaptic N-type Ca2+ channels. Furthermore, the increased presynaptic firing could also overcome even complete depolarization-induced suppression of inhibition, indicating that the magnitude of DSI markedly depends on the activity levels of basket cells. These results reveal a new locus of activity-dependent modulation for endocannabinoid signaling and suggest that endocannabinoid-mediated inhibition of GABA release may differ in distinct behavioral states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presynaptic Cell Dependent Modulation of Inhibition in Cortical Regions

Several lines of evidence suggest that the modulation of presynaptic GABA release is mediated by a variety of receptors including; presynaptic AMPA, cannabinoid, GABA(B), kainate, metabotropic glutamate, NMDA, and opioid receptors. The evidence supporting presynaptic modulation of inhibition is predominantly obtained from studying stimulus elicited, spontaneous or miniature synaptic events, whe...

متن کامل

CB1 modulation of temporally distinct synaptic facilitation among local circuit interneurons mediated by N-type calcium channels in CA1.

One of the critical factors in determining network behavior of neurons is the influence of local circuit connections among interneurons. The short-term synaptic plasticity and the subtype of presynaptic calcium channels used at local circuit connections of inhibitory interneurons in CA1 were investigated using dual whole-cell recordings combined with biocytin and double immunofluorescence label...

متن کامل

Presynaptic calcium channel inhibition underlies CB₁ cannabinoid receptor-mediated suppression of GABA release.

CB1 cannabinoid receptors (CB1) are located at axon terminals and effectively control synaptic communication and thereby circuit operation widespread in the CNS. Although it is partially uncovered how CB1 activation leads to the reduction of synaptic excitation, the mechanisms of the decrease of GABA release upon activation of these cannabinoid receptors remain elusive. To determine the mechani...

متن کامل

Requirement for CB1 but not GABAB receptors in the cholecystokinin mediated inhibition of GABA release from cholecystokinin expressing basket cells.

Cholecystokinin (CCK) is an abundant neuropeptide involved in normal behaviour and pathophysiological conditions. Recently, CCK was shown to act as a molecular switch for perisomatic inhibition in the hippocampus, by directly depolarizing parvalbumin expressing (PV+) basket cells while indirectly depressing GABA release from CCK expressing (CCK+) basket cells. However, whether these two CCK-med...

متن کامل

Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus.

Psychoactive effects of cannabinoids are thought to be mediated, at least in part, by suppression of both glutamate and GABA release via CB1 cannabinoid receptor. Two types of cannabinoid receptor (CB1 and CB2) have been cloned so far. The CB1 receptors are abundantly expressed in the nervous system, whereas CB2 receptors are limited to lymphoid organs (Matsuda et al., 1990; Munro et al., 1993)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 5  شماره 

صفحات  -

تاریخ انتشار 2006